90 research outputs found

    Unsupervised Texture Segmentation

    Get PDF

    Digital Mammogram Enhancement

    Get PDF

    Illumination Invariants Based on Markov Random Fields

    Get PDF

    Multimodal Range Image Segmentation

    Get PDF

    Accurate Detection of Non-Iris Occlusions

    Get PDF
    Abstract-Accurate detection of iris eyelids and reflections is the prerequisite for the accurate iris recognition, both in near-infrared or visible spectrum measurements. Undected iris occlusions otherwise dramatically decrease the iris recognition rate. This paper presents a fast multispectral iris occlusions detection method based on the underlying multispectral spatial probabilistic iris textural model and adaptive thresholding. The model adaptively learns its parameters on the iris texture part and subsequently checks for iris reflections, eyelashes, and eyelids using the recursive prediction analysis. Our method obtains better accuracy with respect to the previously performed Noisy Iris Challenge Evaluation contest. It ranked first from the 97+2 alternative methods on this large colour iris database

    Probabilistic mixture-based image modelling

    Get PDF
    summary:During the last decade we have introduced probabilistic mixture models into image modelling area, which present highly atypical and extremely demanding applications for these models. This difficulty arises from the necessity to model tens thousands correlated data simultaneously and to reliably learn such unusually complex mixture models. Presented paper surveys these novel generative colour image models based on multivariate discrete, Gaussian or Bernoulli mixtures, respectively and demonstrates their major advantages and drawbacks on texture modelling applications. Our mixture models are restricted to represent two-dimensional visual information. Thus a measured 3D multi-spectral texture is spectrally factorized and corresponding multivariate mixture models are further learned from single orthogonal mono-spectral components and used to synthesise and enlarge these mono-spectral factor components. Texture synthesis is based on easy computation of arbitrary conditional distributions from the model. Finally single synthesised mono-spectral texture planes are transformed into the required synthetic multi-spectral texture. Such models can easily serve not only for texture enlargement but also for segmentation, restoration, and retrieval or to model single factors in unusually complex seven dimensional Bidirectional Texture Function (BTF) space models. The strengths and weaknesses of the presented discrete, Gaussian or Bernoulli mixture based approaches are demonstrated on several colour texture examples

    DYNAMIC TEXTURES MODELING USING TEMPORAL MIXING COEFFICIENTS REDUCTION

    Get PDF
    ABSTRACT Real world materials often change their appearance over time. If these variations are spatially and temporally homogeneous then the material visual appearance can be represented by a dynamic texture which is a natural extension of classic texture concept including the time as an extra dimension. In this article we present possible way to handle multispectral dynamic textures based on a combination of input data eigen analysis and subsequent processing of temporal mixing coefficients. The proposed method exhibits overall good performance, offers extremely fast synthesis which is not restricted in temporal dimension and simultaneously enables to compress significantly the original measured visual data

    Hierarchical Finite-State Modeling for Texture Segmentation with Application to Forest Classification

    Get PDF
    The authors would like to thank the “French Forest Inventory”In this research report we present a new model for texture representation which is particularly well suited for image analysis and segmentation. Any image is first discretized and then a hierarchical finite-state region-based model is automatically coupled with the data by means of a sequential optimization scheme, namely the Texture Fragmentation and Reconstruction (TFR) algorithm. The TFR algorithm allows to model both intra- and inter-texture interactions, and eventually addresses the segmentation task in a completely unsupervised manner. Moreover, it provides a hierarchical output, as the user may decide the scale at which the segmentation has to be given. Tests were carried out on both natural texture mosaics provided by the Prague Texture Segmentation Datagenerator Benchmark and remote-sensing data of forest areas provided by the French National Forest Inventory (IFN)
    • …
    corecore